PHYS 705: Classical Mechanics




September 7 next Monday (Labor Day)

Not all problems will be corrected. Check online solution!
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LECTURE REVIEW
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Newtonian Mechanics: Basic Description

Newton’s second law of motion:

F— @ e where F = ZE is the net sum (vector sum) of

dt all forces actiing on the particle

Fl
The influence of the external world is encoded as forces \‘¢<\F2

(vectors) F acting on the particle.

What we get:
Trajectory in configuration space given by the

Newton’s 274 Jaw !
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Mechanics of a System of Particles

- For a system of particles, one needs to distinguish between :

“external forces” acting on the entire system and
“internal forces” acting within the system

- o2nd Jaw for the ™ particle is: °e
.‘ P )
(&) _ o e
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internal force  net external O

on i from j force on 1



2" L aw & Conservation Theorems for a System of
Particles

1. If the weak form of Newton’s 3¢ law applies ..., i.e.,

F, =-F,
:> F" =p, 2nd Law for a System of Particles

IfF =0, then% =0 = p, =constant Conservation of Linear
“ dt ! Momentum
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2" L aw & Conservation Theorems for a System of
Particles

2. If both the weak & strong forms of Newton’s 3¢ law apply ..., i.e.,

|:> dL,, — Nte;“t’ ond T aw for angular variables
dt (System of Particles)

dL .
IfN; =0,then—*“-=0 = L, , =constant Conservation of Angular
l Momentum
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2" L aw & Conservation Theorems for a System of
Particles

3. If Fisconservative,i.e., F=-VU

Conservation of
‘ 1 +U, =1, +U, Mechanical Energy

1

where T =—mv’ is the kinetic energy



General Motion of a System of Particles
motion of " motion about
the CM

Can be separated into:
the CM




Holonomic Constraints

Holonomic constraints can be expressed as a function in terms of the
coordinates and time,

non-holonomic examples: -Gasin a container
- Particle that slides then falls off a sphere:
the constraint equation must be an inequality
- Object rolling on a rough surface without
slipping... more later

More quantifiers: - Rheonomous: depend on time explicitly
- Scleronomous: not explicitly depend on time

e.g. a bead constraints to move on a fixed vs. a moving wire



Generalized Coordinates

« Without constraints, a system of N particles has 3N dof
« With K constraint equations, the # dof reduces to 3N-K
« With holonomic constraints, one can introduce (3N-K) independent

(proper) generalized coordinates (q1 N BN/ ) such that:

I =r (q19Q29”'DQ3N—K’t)

Iy =Ty (%a%a"'a%N—Kﬂt)

» Generalized coordinates can be anything: angles, energy units, momentum
units, or even amplitudes in the Fourier expansion of r;

> But, they must completely specify the state of a given system
»The choice of a particular set of generalized coordinates is not unique.

»No specific rule in finding the most “suitable” (resulting in simplest EOM)
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D’Alembert’s Principle

To formulate the mechanical problem with constraint forces so that they

“disappear” - you solve the “new” problem using only the (given) applied

forces.
Begin with the 21d Jaw, F=p, or F-p, =0

Consider a virtual infinitesimal displacement Or, consistent with the given

> (F—p,)-6r, =0

i

constraint,

Separating out the applied and constraint forces, F, = Fl.(a) +1

This gives, Z(F,-(a) —p, ) -Or; + Zfi -or, =0

1



D’Alembert’s Principle

Virtual displacement o B
to be consistent means Zfi '5l'l- =0 |:> Z(Fz pi) 51} =0

i

w/ constraints [ virtual work =0 ]

This is the D’Alembert’s Principle. Then, to solve for the EOM...

We need to look into changing the variables into a set of independent
generalized coordinates so that we have
Z (?) j . 5qj =0
J
Then, we can claim the coefficients (?)j in the sum to be independently equal

to zero and the Euler-Lagrange equation will give an explicit expression for

the EOM as:
(?),=0



Geometric View of the D’Alembert’s Principle

Virtual displacement

to be consistent or virtual work =0 or Z f l. -51‘1. =0
I

w/ constraints
==) (Constraint Force f needs to lay L to the constraint surface

z With g(r,?) = 0 being the equation for the
constraint surface and

L —>Vg(r,t) 1 surface

We can “parametrized” f in term of & (r,1),

Y f =AVg(r,t) where 1 is a parameter
N g(r,t)=0
. mX=F+1 Vg(r,t)| 4 unknowns r and 1
This gives, t'
g(r, t) =0 4 equations



Constraint and Work

Consider the EOM in this form: mf =F'“ + AVg(r,?)

Let F@ be a conservative force , i.e., F') = -V U(r,¢) so that

mr =—VU+ AVg

Dotting r into both sides,/ \

. 1 . T
mr-r:i —mrzjzd— VU -r+AVg-r
dt\ 2 dt

Consider the last term, from chain rule, we have,

@z 8gdx+8gdy+8gdz +8g:(vg.l.‘)+6_g
dt \Oxdt oOydt ozdt) ot ot
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Constraint and Work

As the particle moves, it is constrained to stay on the g=0 surface,

dg : og

So, —=—=0 and, (Vg .r)=—=

dt (Ve¥) ot
Similarly, from chain rule, we can write, V{/ .y = au — ou
dt ot

Putting everything together,

mr-r=—VU-r+AVg-r

/ l \ With E=T+U,

dl __dU U og

it dE oU | Og
dt dt ot ot — =— A=

dt ot ot




Constraint and Work
dE _0U _,0g
dt ot ot

So, either U or g explicitly depends on time, the total energy will not be a constant

In time.

Since we typically do not consider time-dependent U potential functions,
So, we can make the following assertions:

Scleronomous (g not explicitly depends on t) Holonomic Constraints:

(Vg - l") =——=0 and constraint force won’t do work!

Rheonomous (g explicitly depends on t) Holonomic Constraints:

. 0
(Vg : l‘) = —a—f #0  and constraint force can do work!



