# PHYS 705: Classical Mechanics

### Notes:

- September 7 next Monday (Labor Day)
- Not all problems will be corrected. Check online solution!

#### LECTURE REVIEW

# Newtonian Mechanics: Basic Description

#### Newton's second law of motion:

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} = \dot{\mathbf{p}}$$

where  $\mathbf{F} = \sum_{i} \mathbf{F}_{i}$  is the net sum (vector sum) of all forces acting on the particle

The influence of the external world is encoded as forces (vectors) **F** acting on the particle.



What we get:

Trajectory in configuration space given by the

Newton's 2<sup>nd</sup> law!

# Mechanics of a System of Particles

- For a system of particles, one needs to distinguish between:

"external forces" acting *on* the entire system and "internal forces" acting *within* the system

-  $2^{\text{nd}}$  law for the  $i^{\text{th}}$  particle is:

$$\sum_{j} \mathbf{F}_{ji} + \mathbf{F}_{i}^{(e)} = \dot{\mathbf{p}}_{i}$$
internal force net external force on  $i$ 



# 2<sup>nd</sup> Law & Conservation Theorems for a System of **Particles**

1. If the weak form of Newton's 3<sup>rd</sup> law applies ..., i.e.,

$$\mathbf{F}_{ji} = -\mathbf{F}_{ij}$$



$$\mathbf{F}_{tot}^{ext} = \dot{\mathbf{p}}_{tot}$$

 $\mathbf{F}_{tot}^{ext} = \dot{\mathbf{p}}_{tot}$  2<sup>nd</sup> Law for a System of Particles

If 
$$\mathbf{F}_{tot}^{ext} = 0$$
, then  $\frac{d\mathbf{p}_{tot}}{dt} = 0 \implies \mathbf{p}_{tot} = \text{constant}$ 

Conservation of Linear Momentum

# 2<sup>nd</sup> Law & Conservation Theorems for a System of **Particles**

2. If both the weak & strong forms of Newton's 3<sup>rd</sup> law apply ..., i.e.,

$$\mathbf{F}_{ji} = -\mathbf{F}_{ij}$$

$$\mathbf{r}_{ij} \times \mathbf{F}_{ji} = 0$$

$$\frac{d\mathbf{L}_{tot}}{dt} = \mathbf{N}_{tot}^{ext}$$

 $\frac{d\mathbf{L}_{tot}}{dt} = \mathbf{N}_{tot}^{ext}$  2<sup>nd</sup> Law for angular variables (System of Particles)

If 
$$\mathbf{N}_{tot}^{ext} = 0$$
, then  $\frac{d\mathbf{L}_{tot}}{dt} = 0 \implies \mathbf{L}_{tot} = \text{constant}$  Conservation of Angular Momentum

# 2<sup>nd</sup> Law & Conservation Theorems for a System of **Particles**

**3.** If **F** is conservative, i.e.,  $\mathbf{F} = -\nabla U$ 



$$T_1 + U_1 = T_2 + U_2$$

Conservation of Mechanical Energy

where 
$$T = \frac{1}{2}mv^2$$
 is the kinetic energy

# General Motion of a System of Particles

Can be separated into: 
$$\binom{\text{motion } of}{\text{the CM}} \oplus \binom{\text{motion } about}{\text{the CM}}$$



$$\mathbf{R} + \mathbf{r}_i' = \mathbf{r}_i$$
  
 $\mathbf{V} + \mathbf{v}_i' = \mathbf{v}_i$ 

$$\mathbf{R} = \frac{\sum_{i} m_{i} \mathbf{r}_{i}}{\sum_{i} m_{i}}$$

$$\mathbf{p}_{tot} = M \frac{d\mathbf{R}}{dt}$$

$$\mathbf{L}_{tot} = \mathbf{R} \times M\mathbf{V} + \sum_{i} (\mathbf{r}_{i} \times m_{i} \mathbf{v}_{i})$$

$$T = \frac{1}{2} \sum_{i} m_{i} V^{2} + \frac{1}{2} \sum_{i} m_{i} (v_{i}')^{2}$$

$$U = U_{ext} + U_{int}$$

### **Holonomic Constraints**

Holonomic constraints can be expressed as a function in terms of the coordinates and time,

$$f\left(\mathbf{r}_{1},\mathbf{r}_{2},\cdots;t\right)=0$$

e.g. (a rigid body) 
$$\rightarrow (\mathbf{r}_i - \mathbf{r}_j)^2 - c_{ij}^2 = 0$$

non-holonomic examples: -Gas in a container

- Particle that slides then falls off a sphere: the constraint equation must be an inequality

- Object rolling on a rough surface without

slipping... more later

More quantifiers: - Rheonomous: depend on time explicitly

- Scleronomous: not explicitly depend on time

e.g. a bead constraints to move on a fixed vs. a moving wire

### Generalized Coordinates

- Without constraints, a system of N particles has 3N dof
- With *K* constraint equations, the # dof reduces to 3*N*-*K*
- With holonomic constraints, one can introduce (3*N*-*K*) **independent** (proper) generalized coordinates  $(q_1, q_2, \dots, q_{3N-K})$  such that:

$$\mathbf{r}_{1} = \mathbf{r}_{1} \left( q_{1}, q_{2}, \cdots, q_{3N-K}, t \right)$$

$$\vdots$$

$$\mathbf{r}_{N} = \mathbf{r}_{N} \left( q_{1}, q_{2}, \cdots, q_{3N-K}, t \right)$$

- $\triangleright$  Generalized coordinates can be anything: angles, energy units, momentum units, or even amplitudes in the Fourier expansion of  $\mathbf{r}_i$
- > But, they must completely specify the state of a given system
- The choice of a particular set of generalized coordinates is not unique.
- ➤ No specific rule in finding the most "suitable" (resulting in simplest EOM)

## D'Alembert's Principle

To formulate the mechanical problem with constraint forces so that they "disappear" → you solve the "new" problem using only the (given) applied forces.

Begin with the 2<sup>nd</sup> law, 
$$\mathbf{F}_i = \dot{\mathbf{p}}_i$$
 or  $\mathbf{F}_i - \dot{\mathbf{p}}_i = 0$ 

Consider a virtual infinitesimal displacement  $\delta \mathbf{r}_i$  consistent with the given constraint,

$$\sum_{i} (\mathbf{F}_{i} - \dot{\mathbf{p}}_{i}) \cdot \delta \mathbf{r}_{i} = 0$$

Separating out the applied and constraint forces,  $\mathbf{F}_i = \mathbf{F}_i^{(a)} + \mathbf{f}_i$ 

This gives, 
$$\sum_{i} \left( \mathbf{F}_{i}^{(a)} - \dot{\mathbf{p}}_{i} \right) \cdot \delta \mathbf{r}_{i} + \sum_{i} \mathbf{f}_{i} \cdot \delta \mathbf{r}_{i} = 0$$

## D'Alembert's Principle

This is the D'Alembert's Principle. Then, to solve for the EOM...

We need to look into changing the variables into a set of *independent* **generalized coordinates** so that we have

$$\sum_{j} (?)_{j} \cdot \delta q_{j} = 0$$

Then, we can claim the coefficients  $(?)_j$  in the sum to be independently equal to zero and the **Euler-Lagrange equation** will give an explicit expression for the EOM as:

$$(?)_i = 0$$

# Geometric View of the D'Alembert's Principle

(Virtual displacement)to be consistentw/ constraints

or virtual work = o or 
$$\sum_{i} \mathbf{f}_{i} \cdot \delta \mathbf{r}_{i} = 0$$



Constraint Force **f** needs to lay  $\perp$  to the constraint surface



This gives,

With  $g(\mathbf{r},t) = 0$  being the equation for the constraint surface and

$$\rightarrow \nabla g(\mathbf{r},t) \perp \text{surface}$$

We can "parametrized"  $\mathbf{f}$  in term of  $g(\mathbf{r}, t)$ ,

$$\mathbf{f} = \lambda \nabla g(\mathbf{r}, t)$$
 where  $\lambda$  is a parameter

$$m\ddot{\mathbf{x}} = \mathbf{F}^{(a)} + \lambda \nabla g(\mathbf{r}, t)$$
 4 unknowns  $\mathbf{r}$  and  $\lambda$  4 equations

### Constraint and Work

Consider the EOM in this form:  $m\ddot{\mathbf{r}} = \mathbf{F}^{(a)} + \lambda \nabla g(\mathbf{r}, t)$ 

Let  $\mathbf{F}^{(a)}$  be a conservative force, i.e.,  $\mathbf{F}^{(a)} = -\nabla U(\mathbf{r}, t)$  so that

$$m\ddot{\mathbf{r}} = -\nabla U + \lambda \nabla g$$
Dotting  $\dot{\mathbf{r}}$  into both sides,
$$m\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \frac{d}{dt} \left( \frac{1}{2} m \dot{\mathbf{r}}^2 \right) = \frac{dT}{dt} \qquad -\nabla U \cdot \dot{\mathbf{r}} + \lambda \nabla g \cdot \dot{\mathbf{r}}$$

Consider the last term, from chain rule, we have,

$$\frac{dg}{dt} = \left(\frac{\partial g}{\partial x}\frac{dx}{dt} + \frac{\partial g}{\partial y}\frac{dy}{dt} + \frac{\partial g}{\partial z}\frac{dz}{dt}\right) + \frac{\partial g}{\partial t} = \left(\nabla g \cdot \dot{\mathbf{r}}\right) + \frac{\partial g}{\partial t}$$

### Constraint and Work

As the particle moves, it is constrained to stay on the g=o surface,

So, 
$$\frac{dg}{dt} = 0$$
 and,  $(\nabla g \cdot \dot{\mathbf{r}}) = -\frac{\partial g}{\partial t}$ 

Similarly, from chain rule, we can write,  $\nabla U \cdot \dot{\mathbf{r}} = \frac{dU}{dt} - \frac{\partial U}{\partial t}$ 

Putting everything together,

$$m\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = -\nabla U \cdot \dot{\mathbf{r}} + \lambda \nabla g \cdot \dot{\mathbf{r}}$$

$$\sqrt{\frac{dT}{dt}} = -\frac{dU}{dt} + \frac{\partial U}{\partial t} - \lambda \frac{\partial g}{\partial t}$$

$$\frac{dE}{dt} = \frac{\partial U}{\partial t} - \lambda \frac{\partial g}{\partial t}$$

#### Constraint and Work

$$\frac{dE}{dt} = \frac{\partial U}{\partial t} - \lambda \frac{\partial g}{\partial t}$$

So, either *U* or *g* explicitly depends on time, the total energy will not be a constant in time.

Since we typically do not consider time-dependent U potential functions, So, we can make the following assertions:

Scleronomous (*g* not explicitly depends on *t*) Holonomic Constraints:

$$(\nabla g \cdot \dot{\mathbf{r}}) = -\frac{\partial g}{\partial t} = 0$$
 and constraint force won't do work!

Rheonomous (*g* explicitly depends on *t*) Holonomic Constraints:

$$(\nabla g \cdot \dot{\mathbf{r}}) = -\frac{\partial g}{\partial t} \neq 0$$
 and constraint force can do work!