
PHYS 705: Classical Mechanics
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Notes:

- September 7 next Monday (Labor Day)

- Not all problems will be corrected.  Check online solution!
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LECTURE REVIEW
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Newtonian Mechanics: Basic Description

r

O

F1

F2The influence of the external world is encoded as forces

(vectors) F acting on the particle.

Newton’s second law of motion:

d

dt
 

p
F p where                   is the net sum (vector sum) of 

all forces acting on the particle

i
i

 F F

What we get:

Trajectory in configuration space given by the 

Newton’s 2nd law !
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Mechanics of a System of Particles

- For a system of particles, one needs to distinguish between :

“external forces” acting on the entire system and
“internal forces” acting within the system 

- 2nd law for the ith particle is:

internal force 
on i from j

( )e
ji i i

j

 F F p ir

Onet external 
force on i
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2nd Law & Conservation Theorems for a System of 
Particles

If 0, then 0 constantext tot
tot tot

d

dt
   

p
F p Conservation of Linear 

Momentum

2nd Law for a System of Particlesext
tot totF p

ji ij F F

1. If  the weak form of Newton’s 3rd law applies …, i.e.,
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2nd Law & Conservation Theorems for a System of 
Particles

If 0, then 0 constantext tot
tot tot

d

dt
   

L
N L Conservation of Angular 

Momentum

2nd Law for angular variables 
(System of Particles)

ji ij F F

2. If  both the weak & strong forms of Newton’s 3rd law apply …, i.e.,

0i j ji r F

exttot
tot

d

dt


L
N
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2nd Law & Conservation Theorems for a System of 
Particles

3. If  F is conservative, i.e., U F

1 1 2 2T U T U   Conservation of 
Mechanical Energy

where                         is the kinetic energy21

2
T mv
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General Motion of a System of Particles

Can be separated into: 

 ' 'i i i
i

tot M m   r vL R V

motmot ion  

the

ion  

the C  CM M

of about   
   

   

tot

d
M

dt
p

R

'

'
i i

i i

 
 

R r r

V v v

O

ir

R

'ir CM

 22 1
'

1

2 2 i i
i

i
i

T V m vm  

intextU UU  
i i

i

i
i

m

m





r
R
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Holonomic Constraints
Holonomic constraints can be expressed as a function in terms of the 
coordinates and time,

e.g. (a rigid body) 

 1 2, , ; 0f t r r 

non-holonomic examples:

More quantifiers: 

 2 2 0i j ijc  r r

-Gas in a container
- Particle that slides then falls off a sphere: 
the constraint equation must be an inequality
- Object rolling on a rough surface without 
slipping… more later 

- Rheonomous: depend on time explicitly 
- Scleronomous: not explicitly depend on time

e.g. a bead constraints to move on a fixed vs. a moving wire
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• Without constraints, a system of N particles has 3N dof

• With K constraint equations, the # dof reduces to 3N-K

• With holonomic constraints, one can introduce (3N-K) independent

(proper) generalized coordinates such that:

Generalized Coordinates

 1 2 3, , , N Kq q q 

 Generalized coordinates can be anything: angles, energy units, momentum 
units, or even amplitudes in the Fourier expansion of ri

 But, they must completely specify the state of a given system

The choice of a particular set of generalized coordinates is not unique.

No specific rule in finding the most “suitable”  (resulting in simplest EOM)

 

 

1 1 1 2 3

1 2 3

, , , ,

, , , ,

N K

N N N K

q q q t

q q q t









r r

r r





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Consider a virtual infinitesimal displacement         consistent with the given 

constraint,

To formulate the mechanical problem with constraint forces so that they 

“disappear”  you solve the “new” problem using only the (given) applied 

forces.

D’Alembert’s Principle

Begin with the 2nd law,

ir

or 0i i i i  F p F p 

  0i i i
i

   F p r

( )a
i i i F F f

 ( ) 0a
i i i i i

i i

      F p r f r

Separating out the applied and constraint forces, 

This gives, 
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Then, we can claim the coefficients           in the sum to be independently equal 

to zero and the Euler-Lagrange equation will give an explicit expression for 

the EOM as:

D’Alembert’s Principle

 ( ) 0a
i i i

i

   F p r

This is the D’Alembert’s Principle.  Then, to solve for the EOM…

We need to look into changing the variables into a set of independent

generalized coordinates so that we have                                    

 ? 0jj
j

q 
 ?

j

 ? 0
j



0i i
i

 f r
Virtual displacement 

to be consistent 

w/ constraints

 
 
 
 
 

means
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virtual work =0



Constraint Force f needs to lay      to the constraint surface

Geometric View of the D’Alembert’s Principle

With  being the equation for the 
constraint surface and



x

y

z

f

( , ) 0g t r

( , ) surfaceg t  r

We can “parametrized”    in term of             ,

( , )g t f r where  is a parameter

( ) ( , )

( , ) 0

am g t

g t

   


 

x F r

r

 4 unknowns r and  
4 equations

This gives,
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( , ) 0g t r

( , )g trf

0i i
i

  f r
Virtual displacement 

to be consistent 

w/ constraints

 
 
 
 
 

virtual work =0or or



Constraint and Work

Let F(a)  be a conservative force , i.e.,                                   so that ( ) ( , )a U t F r

m U g   r
Dotting      into both sides,r

21

2

d dT
m m

dt dt
    
 

r r r   U g    r r 

Consider the last term, from chain rule, we have,

 dg g dx g dy g dz g g
g

dt x dt y dt z dt t t

     
             

r
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( ) ( , )am g t  r F rConsider the EOM in this form:



Constraint and Work

As the particle moves, it is constrained to stay on the g=0 surface, 

So,                     and,0
d g

d t


dU U

dt

d

tdt t

T g
 




 


Similarly, from chain rule, we can write, dU U
U

dt t


   


r

  g
g

t


   


r

Putting everything together,

dE U g

dt t t
 

 
 

With E=T+U,
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Constraint and Work

So, either U or g explicitly depends on time, the total energy will not be a constant 

in time.

Since we typically do not consider time-dependent U potential functions, 

So, we can make the following assertions:

  0
g

g
t


    


r

Scleronomous (g not explicitly depends on t) Holonomic Constraints:

and constraint force won’t do work!

  0
g

g
t


    


r

Rheonomous (g explicitly depends on t) Holonomic Constraints:

and constraint force can do work! 
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dE U g

dt t t
 

 
 


